import Data.Graph import Data.Graph.Inductive.Basic import Data.Array import qualified Data.Array as A tabulate :: Bounds -> [Vertex] -> Table Int tabulate bnds vs = A.array bnds (zip vs [1..]) -- tabOrd :: Graph -> ([Tree Vertex] -> [Vertex]) -> Table Int tabOrd g ord = tabulate (bounds g) $ ord $ dff g -- tree :: Graph -> [Edge] tree g = (concat (map flat ts)) where ts = dff g flat (Node v ts) = [ (v,w) | Node w us <- ts] ++ concat (map flat ts) -- treeG :: Graph -> [Edge] treeG = tree -- back :: Graph -> Table Int -> [Edge] back g post = filter f $ edges g where f (v,w) = post ! v < post ! w -- backG :: Graph -> [Edge] backG g = back g $ tabOrd g postorderF -- cross :: Graph -> Table Int -> Table Int -> [Edge] cross g pre post = filter f $ edges g where f (v,w) = post ! v > post ! w && pre ! v > pre ! w -- crossG :: Graph -> [Edge] crossG g = cross g (tabOrd g preorderF) (tabOrd g postorderF) -- forward :: Graph -> Table Int -> [Edge] forward g pre = (filter f $ edges g) \\ tree g where f (v,w) = pre ! v < pre ! w -- forwardG :: Graph -> [Edge] forwardG g = forward g $ tabOrd g preorderF -- -- basically only used for Edge -> Pattern Int as input for scale pairfastcat :: (a, a) -> Pattern a pairfastcat = (\(u,v) -> fastcat $ pure <$> [u,v]) -- nodeEdgePairs :: Graph -> [(Vertex,[Edge])] nodeEdgePairs g = map (\u -> (u,[(u,v)| v <- g ! u])) $ preorderF $ dff g -- instrument :: Graph -> Edge -> [Char] instrument g e | p treeG = "clubkick" | p forwardG = "superpwm" | p backG = "casio" | p crossG = "amencutup" | otherwise = "sn" -- edge is (x,x) where p f = e `elem` (f g) -- -- complete graph k n = buildG (1,n) [(u,v)|u <- [1..n],v <- [1..n]] -- path p n = buildG (1,n) [(u,u+1)|u <- [1..n-1]] -- reversed path TODO function to reverse all edges for arbitary graphs p' n = buildG (1,n) [(u+1,u)|u <- [1..n-1]] -- TODO Tiefe -- TODO Wurzel betonen -- TODO Blätter betonen? g1 = buildG (0,6) [(1,5),(1,2),(1,3),(2,4),(3,6),(4,2),(4,3),(5,1),(5,2),(5,6),(6,0),(0,6)] g2 = buildG (0,6) $ id <$> [(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(2,1)] t1 = buildG (1,15) [(1,4),(1,12),(4,2),(4,6),(2,8),(2,3),(6,5),(6,7),(12,10),(12,14),(10,9),(10,11),(14,13),(14,15)] -- nubbeKG = buildG (0,89) [(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,52),(0,53),(0,54),(1,68),(1,69),(1,70),(2,71),(2,72),(2,73),(2,74),(3,75),(3,76),(3,77),(3,78),(3,79),(3,80),(3,81),(3,82),(3,83),(3,84),(3,85),(3,86),(3,87),(3,88),(3,89),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,60),(5,61),(5,62),(5,63),(5,64),(5,65),(5,66),(5,67),(6,55),(6,56),(6,57),(6,58),(6,59),(7,16),(7,17),(7,18),(7,19),(8,48),(8,49),(8,50),(8,51),(9,44),(9,45),(9,46),(9,47),(10,40),(10,41),(10,42),(10,43),(11,36),(11,37),(11,38),(11,39),(12,32),(12,33),(12,34),(12,35),(13,28),(13,29),(13,30),(13,31),(14,24),(14,25),(14,26),(14,27),(15,20),(15,21),(15,22),(15,23)] let edgePattern g e = (n $ pure $ toEnum $ (snd e) `mod` 31) # (s $ pure $ instrument g e) # gain 1 vertexPattern g v = (scale "ritusen" $ pure $ toEnum $ (v `mod` 31) - 10) # s "supersquare" # rate 0.1 # resonance 0.2 # end 0.2 # gain 0.8 patternize g = map (\(x,y) -> fastcat [vertexPattern g x, cat $ map (edgePattern g) y]) $ nodeEdgePairs g gs = [ k 30 , p 2 ] in d1 $ id $ qtrigger -- restart at the beginning of the preorder $ fast 4.0 -- depends on maximum degree $ ghost $ (stack $ map cat $ map patternize gs) # size "[0.8|0]" # room "[0.7|0]" # lpf "[1000|1500|2000]" # pan (randcat [-0.5,-0.3,-0.1,0,0.1,0.3,0.5]) -- # delay "[0|0.2|0.3|0.4|0.5|0.6|0.7|0.8|0.9|1]" -- # delayfb 0.3 hush -- testing stuff d1 $ qtrigger $ fast 2 $ s "" # end 0.2 d1 $ timeCat [(1,s "alphabet*4"), (4, fastcat [s "sn", s "bd", s "sn" , s "bd"])] d1 $ fast 4 $ innerJoin $ fromList $ replicate 5 (cat [s "", cat [s "sn", s "jvbass", s "superpiano:0" , s "clubkick"]]) d1 $ fast 2 $ cat [s "", cat [s "sn", s "jvbass", s "superpiano:0" , s "clubkick"]] let g = k 2 in (\(x,y) -> (x, (instrument g) <$> y)) <$> (nodeEdgePairs $ g)